Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Curr Med Chem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38721792

ABSTRACT

Over the past few decades, women have been troubled by grave diseases such as breast cancer, which are biologically and molecularly classified as hereditary diseases. Even though the risk of other cancers is relatively different and the downstream pathway of genetic mutation differs from breast cancer, the continued transformation of genes such as BRCA1 and BRCA2 leads to breast cancer malignancy. Notably at the molecular level, a parallel connection between the normal growth of breast and the progression of mammary cancer where the breast cancer stem cells play a crucial role in the advancement of mammary carcinoma. Arguably, several significant signaling pathways, for instance, ER signaling, HER2 signaling, and Wnt signaling control the typical breast development as well as breast stem cells, thereby cell proliferation, cell differentiation, and cell motility are involved. Incidentally, the Mouse Mammary Tumor Virus (MMTV) is notable among the unexplained viral components influenced by virus-corrupting mammary carcinomas. According to the genesis, MMTV proviral DNA is integrated into mammary epithelial cells, and genomic lymphoid cells during viral replication and triggers the progression of cellular oncogenesis. This overview reveals the deadliest theories on breast cancer, molecular mechanisms, and the MMTV transmission cycle. To establish prevention therapies that are both acceptable and efficacious, addressing apprehensions related to the toxicity of these interventions must be a preliminary hurdle to overcome.

2.
Biogerontology ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619670

ABSTRACT

Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.

3.
iScience ; 27(4): 109347, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550986

ABSTRACT

Nanosensors have gained significant attention in recent years for improving energy conversion and storage performance in solar cells. These nanosensors, typically made from nanoparticles or nanowires, can be embedded within the solar cell to monitor parameters like temperature and light intensity. By monitoring these parameters, nanosensors provide real-time feedback and control to optimize the efficiency and performance of the solar cell. They also play a role in detecting potential issues, such as defects, for proactive maintenance and troubleshooting. The integration of nanosensors in solar cells enables the development of smart energy systems, leading to increased power output, improved stability, and a longer lifespan of solar cells. The deployment of nanosensors in solar cells offer promising trajectory for advancing energy conversion, utilization, and storage capabilities. This review summarizes recent advances in nanosensors in solar cells, with a focus on the role they play in enhancing energy conversion, utilization, and storage performance.

4.
Heliyon ; 10(5): e27433, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495156

ABSTRACT

Parkinson's disease is a neurodegenerative condition defined by the progressive death of dopaminergic neurons in the brain. The diagnosis of Parkinson's disease often uses time-consuming clinical evaluations and subjective assessments. Electrochemical Impedance Spectroscopy (EIS) is a useful technique for electroanalytical devices due to its label-free performance, in-situ measurements, and low cost. The development of reliable diagnostic tools for Parkinson's disease can be significantly enhanced by exploring novel techniques like faradaic and non-faradaic EIS detection methods. These techniques have the ability to identify specific biomarkers or changes in electrochemical properties linked to Parkinson's disease, allowing for an early and accurate diagnosis. Faradaic EIS detection methods utilize redox processes on the electrode surface, while non-faradaic EIS methods rely on charge transfer or capacitive properties. EIS can identify biomarkers or changes in electrical properties as indicators of Parkinson's disease by measuring impedance at different frequencies. By combining both faradaic and non-faradaic EIS approaches, it may be possible to obtain a comprehensive understanding of the electrochemical changes occurring in Parkinson's disease patients. This may lead to the development of more effective diagnostic techniques and potentially opening up new avenues for personalized treatment strategies. This review explores the current research on faradaic and non-faradaic EIS approaches for diagnosing Parkinson's disease using electrochemical impedance spectroscopy.

5.
Article in English | MEDLINE | ID: mdl-38494932

ABSTRACT

Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb Withania somnifera, has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these in silico and in vitro studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving in vivo experiments and toxicity evaluation of withanone.

6.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346247

ABSTRACT

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Subject(s)
Actinobacteria , Petroleum , Streptomyces , Actinobacteria/genetics , Actinobacteria/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Actinomyces/metabolism , Biodegradation, Environmental , Agar , Glycerol , Asparagine , Hydrocarbons/metabolism , Petroleum/metabolism , Carbon , Surface-Active Agents/chemistry
7.
Article in English | MEDLINE | ID: mdl-38409854

ABSTRACT

Breast cancer has been reported to be high in its incidence with women, and early identification of breast cancer helps to improve and provide an effective treatment. Tumor markers are active substances; in particular, human epidermal growth factor receptor 2 (HER2) is over-expressed at the level of 20%-30%. This research work developed a highly sensitive HER2 biosensor on the interdigitated electrode (IDE) by using aptamer as a detection probe. To enhance the analytical performances, aptamer was attached to the gold nanoparticle and immobilized on the IDE through a chemical linker [(3-aminopropyl)triethoxysilane]. On the aptamer conjugation, HER2 was quantified through current-volt measurements, and the limit of detection of HER2 was calculated as 1 pg/mL on a linear range from 0.1 to 3000 pg/mL at an R2 (regression coefficient) of 0.9657. Further, a selective performance with human serum increased the current responses by increasing HER2 concentrations. Specific experiments with control protein and complementary aptamer sequence failed to enhance the current responses. This HER2 biosensor reflects the occurrence of breast cancer at its lower abundance and helps to identify the associated complications.

8.
ACS Omega ; 9(5): 5100-5126, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38343989

ABSTRACT

Mercury is a type of hazardous and toxic pollutant that can result in detrimental effects on the environment and human health. This review is aimed at discussing the state-of-the-art progress on the recent developments on the toxicity of mercury and its chemical compounds. More than 210 recent works of literature are covered in this review. It first delineates the types (covering elemental mercury, inorganic mercury compounds, organic mercury compounds), structures, and sources of mercury. It then discusses the pharmacokinetic profile of mercury, molecular mechanisms of mercury toxicity, and clinical manifestation of acute and chronic mercury toxicity to public health. It also elucidates the mercury toxicity to the environment and human health in detail, covering ecotoxicity, neurotoxicity diseases, neurological diseases, genotoxicity and gene regulation, immunogenicity, pregnancy and reproductive system damage, cancer promotion, cardiotoxicity, pulmonary diseases, and renal disease. In order to mitigate the adverse effects of mercury, strategies to overcome mercury toxicity are recommended. Finally, some future perspectives are provided in order to advance this field of research in the future.

9.
Curr Med Chem ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38367263

ABSTRACT

Neurodegenerative diseases (NDDs) comprise a large number of disorders that affect the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination of neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered a good source of biologically active molecules and hence phytochemical screening of plants will pave the way for discovering new drugs. Neurodegeneration has long been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/ metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidant activity is the potential application in the management or prevention of neurodegenerative disorders. Further, it gives future researchers the significance of considering peptide-based therapeutics through various mechanisms in delaying or curing neurodegenerative diseases.

10.
Article in English | MEDLINE | ID: mdl-38311972

ABSTRACT

Parmotrema perlatum, a lichen belonging to the family Parmeliaceae, is well known for its culinary benefits and aroma used as a condiment in Indian homes is also known as the "black stone flower" or "kalpasi" in India. This research intends to analyze the antioxidant power of the crude extracts using four pH-based buffers solubilized proteins/peptides and RP-HPLC fractions of P. perlatum obtained by purification. The proteins that were extracted from the four different buffers were examined using LC-MS/MS-based peptide mass fingerprinting. When compared to the other buffers, the 0.1 M of Tris-HCl buffer pH 8.0 solubilized proteins/peptides had the strongest antioxidant capacity. The sequential purification of the peptide was carried out by using a 3-kDa cut-off membrane filter and semipreparative RP-HPLC. Additionally, the purified fractions of the peptide's antioxidant activity were assessed, and effects were compared with those of the crude and 3 kDa cut--off membrane filtrates. The peptide fractions were sequenced by LC-MS/MS, which reveals that fraction 2 from RP-HPLC with the sequence LSWFMVVAP has shown the highest antioxidant potential in comparison with other fractions which can serve as the potential natural antioxidant drug. Further, fraction 2 also showed antibacterial activity against the selected microorganisms.

11.
Biotechnol Appl Biochem ; 71(2): 429-445, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38238920

ABSTRACT

Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.


Subject(s)
Biosensing Techniques , Communicable Diseases , Nanostructures , Nanotubes, Carbon , Humans , Communicable Diseases/diagnosis , Communicable Diseases/microbiology , Bacteria
12.
Int J Biol Macromol ; 259(Pt 1): 129222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185307

ABSTRACT

The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 µM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.


Subject(s)
Curcumin , Diosmin , Molecular Docking Simulation , Pepsin A/metabolism , Trypsin/metabolism , Curcumin/pharmacology , Kinetics , Polyphenols/pharmacology , Flavonoids/pharmacology , Flavonoids/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
13.
Mikrochim Acta ; 191(2): 118, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296851

ABSTRACT

Highly specific detection of tumor-associated biomarkers remains a challenge in the diagnosis of prostate cancer. In this research, Maackia amurensis (MAA) was used as a recognition element in the functionalization of an electrochemical impedance-spectroscopy biosensor without a label to identify cancer-associated aberrant glycosylation prostate-specific antigen (PSA). The lectin was immobilized on gold-interdigitated microelectrodes. Furthermore, the biosensor's impedance response was used to assess the establishment of a complex binding between MAA and PSA-containing glycans. With a small sample volume, the functionalized interdigitated impedimetric-based (IIB) biosensor exhibited high sensitivity, rapid response, and repeatability. PSA glycoprotein detection was performed by measuring electron transfer resistance values within a concentration range 0.01-100 ng/mL, with a detection limit of 3.574 pg/mL. In this study, the ability of MAA to preferentially recognize α2,3-linked sialic acid in serum PSA was proven, suggesting a potential platform for the development of lectin-based, miniaturized, and cost effective IIB biosensors for future disease detection.


Subject(s)
Biosensing Techniques , Prostatic Neoplasms , Male , Humans , Lectins/chemistry , Biomarkers, Tumor , Prostate-Specific Antigen , Maackia/metabolism , Prostate/metabolism , Prostatic Neoplasms/diagnosis , Biosensing Techniques/methods
14.
Biochimie ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37918463

ABSTRACT

Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.

15.
J Mech Behav Biomed Mater ; 148: 106189, 2023 12.
Article in English | MEDLINE | ID: mdl-37852086

ABSTRACT

Sodium alginate/hydroxyapatite/Nano cellulose (SA/HA/NC) nanocomposite films that possess good biocompatibility for bone tissue engineering are prepared by a simple solution casting. HA is one of the most frequently used bioceramic materials to achieve a high biocompatibility. The bionanocomposite films are analysed by XRD, SEM, EDAX and FTIR studies. XRD confirms the existence of fillers in the polymer. FTIR spectrum shows the different functional modes in the bionanocomposite films. The morphology of fillers and bionanocomposite films are obtained through SEM. The inclusion of NC with different concentrations into the biopolymer film improves the tensile strength. As a result, the loading of 5 wt % of NC and 10 wt% of HA in the SA polymer shows high tensile strength when compared to the pure SA, SA filled with 10 wt% of HA and SA loaded with 10 wt% of HA and inclusion of NC (0.5 and 2.5 wt%). The tensile strength (TS) of bionanocomposite film with 10 wt % of HA is increased by 17%. TS of bionanocomposite film with 0.5 and 2.5 wt% of NC is increased by 177 and 277%, whereas TS of bionanocomposite film loaded 5 wt% of NC is increased by 331%. The swelling, biodegradation and biomineralization tests suggest that this bionanocomposite films are hopeful biomaterials for bone tissue engineering.


Subject(s)
Durapatite , Tissue Engineering , Alginates , Bone and Bones , Polymers
16.
Heliyon ; 9(9): e20051, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809763

ABSTRACT

Due to environmental concerns and budgetary constraints associated with synthetic fibers, natural fibers (NFr) are becoming increasingly popular as reinforcement in polymer composites (PCs) for structural components and construction materials. The surface treatment (ST) method is a well-established technique for enhancing the strength of interfacial bonding between NFr and the polymer matrix (PM). As a result, this research aims to determine the effect of ST with zinc oxide nanoparticles (ZnONPs) on the flexural properties of unsaturated polyester (UPE)/kenaf fiber (KF) nanocomposites. The hand lay-up technique was employed to produce KF-reinforced unsaturated polyester composites (KF/UPE) for this investigation. UPE/KF-ZnONPs composites were made with varying NFr loadings (weight percent), ranging from 10 to 40%. KF was treated with five distinct amounts of ZnONPs (from 1 to 5% weight percent). According to the findings of the investigation, the composite samples incorporating ZnONPs displayed superior optimum flexural properties compared to the untreated KF composite. It was found that 2% ZnONPs was optimal, and ST with ZnONPs could produce robust KF with improved flexural properties.

17.
Curr Med Chem ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37877148

ABSTRACT

Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.

18.
Heliyon ; 9(9): e19304, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662784

ABSTRACT

A spinal cord injury is damage to the nerves and cells that receive and provide a signal from the brain to the rest of the body. Spinal injury causes changes in movement, sensation, and strength, affect the body functions near the injury site, and may lead to paralysis. S100ß was found as a suitable biomarker for identifying spinal cord injury and its causing problem. Herein, S100ß immunoassay was developed on interdigitated electrode sensor to diagnose spinal cord injury. For effective anti-S100ß antibody immobilization, the antibody was premixed with 3-Aminopropyl)triethoxsilane and then attached to the hydroxylated interdigitated electrode surface. This method of antibody immobilization enhanced the antibody attachment two-times than the method without premix. Antibody-attached surfaces increased current responses as S100 concentrations increased, and the limit of detection was seen to be 1 pg/mL on the linearity until 3000 pg/mL at an R2 value of 0.9907 [y = 7x - 6.4667]. Further, biofouling experiments with glial fibrillary acidic protein and γ-aminobutyric acid failed to enhance the current response, indicating the specific detection of S100ß. This immunoassay identifies S100ß at its lower level and helps to diagnose spinal cord injury and its related problem.

19.
J Cancer ; 14(13): 2491-2516, 2023.
Article in English | MEDLINE | ID: mdl-37670975

ABSTRACT

Gastrointestinal (GI) cancers are among the most common cancers that impact the global population, with high mortality and low survival rates after breast and lung cancers. Identifying useful molecular targets in GI cancers are crucial for improving diagnosis, prognosis, and treatment outcomes, however, limited by poor targeting and drug delivery system. Aptamers are often utilized in the field of biomarkers identification, targeting, and as a drug/inhibitor delivery cargo. Their natural and chemically modifiable binding capability, high affinity, and specificity are favored over antibodies and potential early diagnostic imaging and drug delivery applications. Studies have demonstrated the use of different aptamers as drug delivery agents and early molecular diagnostic and detection probes for treating cancers. This review aims to first describe aptamers' generation, characteristics, and classifications, also providing insights into their recent applications in the diagnosis and medical imaging, prognosis, and anticancer drug delivery system of GI cancers. Besides, it mainly discussed the relevant molecular targets and associated molecular mechanisms involved, as well as their applications for potential treatments for GI cancers. In addition, the current applications of aptamers in a clinical setting to treat GI cancers are deciphered. In conclusion, aptamers are multifunctional molecules that could be effectively used as an anticancer agent or drug delivery system for treating GI cancers and deserve further investigations for clinical applications.

20.
Int J Biol Macromol ; 253(Pt 2): 126620, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37683754

ABSTRACT

Troponin I is a protein released into the human blood circulation and a commonly used biomarker due to its sensitivity and specificity in diagnosing myocardial injury. When heart injury occurs, elevated troponin Troponin I levels are released into the bloodstream. The biomarker is a strong and reliable indicator of myocardial injury in a person, with immediate treatment required. For electrochemical sensing of Troponin I, a quadruplet 3D laser-scribed graphene/molybdenum disulphide functionalised N2-doped graphene quantum dots hybrid with lignin-based Ag-nanoparticles (3D LSG/MoS2/N-GQDs/L-Ag NPs) was fabricated using a hydrothermal process as an enhanced quadruplet substrate. Hybrid MoS2 nanoflower (H3 NF) and nanosphere (H3 NS) were formed independently by varying MoS2 precursors and were grown on 3D LSG uniformly without severe stacking and restacking issues, and characterized by morphological, physical, and structural analyses with the N-GQDs and Ag NPs evenly distributed on 3D LSG/MoS2 surface by covalent bonding. The selective capture of and specific interaction with Troponin I by the biotinylated aptamer probe on the bio-electrode, resulted in an increment in the charge transfer resistance. The limit of detection, based on impedance spectroscopy, is 100 aM for both H3 NF and H3 NS hybrids, with the H3 NF hybrid biosensor having better analytical performance in terms of linearity, selectivity, repeatability, and stability.


Subject(s)
Biosensing Techniques , Graphite , Nanoparticles , Quantum Dots , Humans , Quantum Dots/chemistry , Graphite/chemistry , Molybdenum/chemistry , Lignin , Troponin I , Biosensing Techniques/methods , Biomarkers , Electrochemical Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...